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Configuration space for random walk dynamics?
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Abstract. Applied to statistical physics models, the random cost algorithm enforces a Random Walk (RW)
in energy (or possibly other thermodynamic quantities). The dynamics of this procedure is distinct from
fixed weight updates. The probability for a configuration to be sampled depends on a number of unusual
quantities, which are explained in this paper. This has been overlooked in recent literature, where the
method is advertised for the calculation of canonical expectation values. We illustrate these points for
the 2d Ising model. In addition, we prove a previously conjectured equation which relates microcanonical
expectation values to the spectral density.

PACS. 75.40.Mg Numerical simulation studies – 5.50.+q Lattice theory and statistics; Ising problems

The performance of a numerical simulation depends on
the chosen weight factors. Hence, some attempt should
be made to optimize them for the problem at hand. The
weight function of canonical MC simulations is exp(−βE),
where E is the energy of the configuration to be updated
and β is the inverse temperature in natural units. The
Metropolis algorithm and other methods generate canon-
ical configurations (i.e. the Gibbs ensemble) through a
Markov process. It has been expert wisdom [1] for quite a
while and became widely recognized in recent years that
MC simulations with a priori unknown weight factors are
also feasible and deserve to be considered, for a concise
recent review see [2]. For instance, weighting (in a certain
energy range) with the inverse spectral density 1/n(E)
has turned out to be of practical importance. Examples
are calculations of interfacial tensions for first order phase
transitions, where improvements of many orders of mag-
nitude were obtained. Instead of the energy other thermo-
dynamic variables can be considered as well, e.g. [3]. To
be definite, we focus on the energy.

MC simulations with a priori unknown weight factors
require an additional step, not encountered in canonical
simulations: a working estimate of the weight factors needs
to be obtained first. Quite efficient recursive methods have
been developed for this purpose [4]. Still, the question sug-
gests itself whether one can possibly bypass the first step
and develop methods which sample broad energy distribu-
tions right away. Indeed, it is possible to design updates
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such that a RW in some cost function is generated [5] and
the energy of a statistical physics model can be chosen as
cost function. Unfortunately (as already noted in [5]) the
connection to the desired canonical expectation values is
apparently lost. Nevertheless, it appears to be worthwhile
to investigate properties of the thus generated configura-
tions. In particular, some details are subtle and, besides
the origin of the method, ignored in recent literature [6].

We consider generalized Ising models in d dimensions,
described by the energy function

E = −
∑
ij

Jij sisj (1)

where the sum is over nearest neighbors and the exchange
coupling constants Jij as well as the spins si, sj take the
values ±1. The Ising ferromagnet is obtained with Jij ≡ 1.
Other special cases are the Ising anti-ferromagnet, frus-
trated Ising models and spin glasses. We consider a con-
figuration of N spins and choose periodic boundary con-
ditions. Under flip of a single spin the energy can change
by the following increments

∆Ei = 4 i

with i = −d, . . .,−1, 0, 1, . . ., d. (2)

In the following we use i to label Flip Groups (FGs) of
spins. We define now numbers

Ni with i = −d, −d+ 1, . . . d− 1, d

and
d∑

i=−d

Ni = N (3)
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to partition the configuration of N spins with respect to
the FGs. Namely, Ni denotes the number of spins which,
when flipped, change the energy by ∆E = 4 i. In the fol-
lowing Ni is referred to as Flip Group Magnitude (FGM).
The random cost algorithm [5] achieves a RW in energy by
flipping spins with suitable probabilities related to FGs.
Let Pi be the probability for picking and flipping a spin
in the FG labeled by i. A RW in E is obtained whenever
the equation

d∑
i=1

i (Pi − P−i) = 0 (4)

holds, because the expectation value of energy changes
∆E becomes then zero. In should be noted that P0 does
not enter this equation and can be chosen at will. Besides,
equation (4) does not fix the other probabilities either,
but allows considerable freedom concerning their further
design. Before we come to this, let us note that Ni has
to be greater than zero for at least one i ≥ 1 and one
i ≤ −1. Otherwise, a RW can no longer be achieved. This
latter difficulty happens in a local minimum or maximum
of the system and, by whatever additional rule, one or
more spins have to be flipped before the RW simulation
can continue. In the following we assume that the noted
Ni > 0 condition is fulfilled.

Solutions to (4) are easily found, the following is given
in [5]. We define

∆E + =
1

N+

d∑
i=1

Ni∆Ei

and ∆E− =
1

N−

d∑
i=1

N−i∆E−i (5)

where

N+ =
d∑
i=1

Ni and N− =
d∑
i=1

N−i . (6)

In the same way, we define

P+ =
d∑
i=1

Pi and P− =
d∑
i=1

P−i . (7)

I.e. P + is the probability to pick any of the spins from
the i ≥ 1 FGs and P − is the probability to pick any of the
spins from the i ≤ −1 FGs. Finally, assume that within
those FGs the spins are picked with uniform probability,
with p+ = P +/N+ for i ≥ 1 and with p− = P −/N−

for i ≤ −1. The RW equation (4) is then implied by the
condition

−P −∆E− = P +∆E + . (8)

Choosing an arbitrary probability P0, the probabilities
P + and P − follow immediately from this equation and
the normalization condition P0 + P + + P − = 1. Another
way [6] to implement (4) is to choose a spin at random
and to reject the flip with the appropriate probability,
then counting the configuration at hand again. Here we
stay with (8).

It follows from equations (3, 4) that every such algo-
rithm samples with weights which depend on the FGMs

w = w (N−d, N−d+1, . . ., Nd−1, Nd) . (9)

For configurations at a fixed energy E the implication of
this equation is that the RW algorithm weights them dif-
ferently depending on the FGM partition, whereas canon-
ically all these configurations have the same weight. In
the following we illustrate this point for the 2d Ising fer-
romagnet.

We have performed canonical as well as RW simula-
tions for 2d Ising models on N = L2 lattices with peri-
odic boundary conditions. For the RW updating we used
P0 = 0.2 and did a random flip, once the energy min-
imum was reached. At large energy we imposed a cut-
off [7] at E = 0, by replacing RW with random (canonical
β = 1/(kBT ) = 0) updating for E > 0. To avoid get-
ting lost in a flood of data, we focus on a single energy.
After gaining some experience E/N = −1 with canon-
ical simulations at β = 0.38 turned out to be a rea-
sonable choice (E(β = 0.38)/N ≈ −1). This value is
in the disordered phase for β below the Curie point at
βc = 0.5 ln(1 +

√
2) = 0.4406 . . . This corresponds to a

configuration space region far away from the energy min-
imum E/N = −2 or the upper energy bound E/N = 0
imposed on the RW simulation. The lattice sizes used are
L = 4, 10, 20, 40 and 80. For each case we generated a
statistics of 20×100 000 sweeps through the lattice and cal-
culated error bars with respect to twenty bins. For L = 4
we also obtained exact results by simply counting through
all 216 configurations and convinced ourselves that the
canonical simulation agrees (within very small statistical
errors) with these exact results, whereas the RW simula-
tion shows already considerable deviations.

Let us focus on the microcanonical average values
N i/N . For the L = 80 lattice Table 1 collects results
from the canonical as well as from the RW simulation. Al-
though over-all small, in case of N−2/N the discrepancy
is about a factor of two and for all FGs the difference
between the canonical and the RW values clearly exceed
the error bars. In the average most spins, about 39%, are
found in the FG with number i = 2. Hence, we have the
best statistics for this FG and choose it to demonstrate a
few more details. Although the discrepancy between the
N2/N values of the table appears quite small, there are
considerable differences when we look at the distribution
of N2. To correct for the expected (non-critical) finite size
behavior, we define the quantity

n = L−1 (N2 −N2) . (10)

Figure 1 shows the canonical and the RW histograms
h2(n), all normalized to

L−1
∑
n

h2(n) = 1 .

Error bars are negligible on the scale of this figure. The
canonical histograms for the different lattice sizes collapse
nicely into one curve, whereas the finite size behavior
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Table 1. Average Flip Group Magnitudes N i/N , i = −2, . . . , 2 as obtained for the Canonical Simulation (CS) versus the
Random Walk (RW) simulation on a 80× 80 lattice. Error bars are given in the parenthesis and apply to the last two digits.

i −2 −1 0 1 2

CS 0.018853(03) 0.072752(04) 0.187630(07) 0.331070(11) 0.389694(09)

RW 0.034282(26) 0.057936(19) 0.169412(57) 0.350240(43) 0.388130(55)
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Fig. 1. Canonical and RW histograms h2(n) at E/N = −1
with n given by (10). All the canonical histograms collapse
onto the highest curve. The RW histograms follow in the order
L = 10, 20, 40 and 80 from up to down.

Table 2. The h2(n) histogram results for the L = 4 lattice (on
this lattice there are 424 configurations at E/N = −1).

n −1.5276 −0.5276 −0.0276 0.4724

N2 0 4 6 8

Exact 32/424 = 192/424 = 1088/424 = 384/424 =

Exact 0.07547... 0.45283... 2.56603... 0.90566...

CS 0.0759(11) 0.4543(35) 2.5672(43) 0.9026(31)

RW 0.2216(08) 0.5471(07) 2.3080(11) 0.9233(10)

of the RW histograms fails to reproduce this behavior. The
RW histograms are far too broad and the peak height de-
creases with lattice size, implying that the discrepancy to
canonical simulation increases with lattice size. The L = 4
data do not fit into the scale of this figure. As there are
only four non-zero entries, we collect them in Table 2.

By taking averages, the dependence on the FGMs ap-
pears to be washed out. This is obvious for the average
N i/N values reported in Table 1 and claimed [6] to be true
for thermodynamic quantities like the energy and the spe-
cific heat. The latter quantities were calculated from the
spectral density g(E) which, in turn, was determined from
the conjectured equations

N i(E) g(E) = N−i(E +∆Ei) g(E +∆Ei) . (11)

In Appendix we give a mathematical proof of these equa-
tions. From this it follows that theN i(E) are microcanoni-
cal averages and not averages accumulated during the RW,
as stated in [6]. Only canonical, microcanonical or other

simulations which give equal weights to distinct configura-
tions at the same energy will converge towards the correct
N i(E) values for this equation. A rigorous calculation of
the spectral density g(E) from RW data is not possible,
because the RW weights depend on the FGMs (3) [8].

For the L = 80 lattice Table 1 lists RW and canoni-
cal expectation values for the N i(E) at E/N = −1. As
the differences are not too large, it is plausible that some
RW and canonical results can be in qualitative agreement
with one another. However, it is obvious that the depen-
dence of the RW configurations weights (9) on the FGM
partition {Ni} enter the Markov process. Even small de-
viations from the canonical weights may amplify, because
they enter multiplicatively through each transition step.
If the RW method is nevertheless used to estimate canon-
ical expectation values, uncontrolled errors result with no
guarantee that they will be negligible when it really mat-
ters (Murphy’s law).

A simulation is normally already subject to finite size
and other difficult to control approximations. Certainly,
one would not like to build a large scale numerical inves-
tigation on a method which introduces an additional bias.
The question arises, whether the weight dependence (9)
could eventually be controlled rigorously. Due to the large
number of partitions of the total number of spins N into
FGMs (3) the prospects for this do not look particularly
good, but it may be worthwhile trying. Finally, we like to
emphasize that the RW approach remains a competitive
method for the purpose it was originally [5] designated
for, namely to find good energy minima for optimization
problems and systems with conflicting constraints.

Appendix

Here we prove equation (11) for the d-dimensional gen-
eralized Ising mode on a lattice with periodic boundary
condition. Let K denote a spin configuration at energy E.
By definition

N i(E) =
1

g(E)

∑
K

Ni(K)

holds. We introduce E′ = E +∆Ei and label spin config-
urations at energy E′ by K ′. Then

N i(E
′) =

1

g(E′)

∑
K′

Ni(K
′)

and equation (11) becomes equivalent to∑
K

Ni(K) =
∑
K′

N−i(K
′) . (12)
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Equation (12) is shown as follows. We label spins in a
fixed configuration by sn(K) where n = 1, . . . , N and
N is the (fixed) total number of spins. In this way each
single spin is uniquely identified. The same is true for spins
sm(K ′) in the configurations at energy E′. Assume now,
spin sn1(K1) is in flip group i and we flip it. It becomes a
spin sm1(K ′1) in the flip group −i at energy E′. No other
spin, say sn2(K2) with at least n2 6= n1 or K1 6= K2,
will be mapped on sm1(K ′1). The reason is: we can flip
the spin sm1(K ′1) back and it will map precisely onto the
original configuration and spin, i.e. become sn1(K1). The
same argument applies when we flip an arbitrary spin from
flip group −i at energy E′. Together this proves: spins in
the flip groups with magnitudes Ni(K) and N−i(K

′) are
in on-to-one correspondence and, hence, equation (12) is
true.
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7. Without this cut-off the RW would extend all the way to
E/N = +2, where a method of return has then to be im-
posed anyway. In our RW simulations slowing down (mea-
sured in CPU time) is with the square (or worse) of the
length of the RW. Hence, without this cut-off CPU time
consumption would increase by at least a factor of four.

8. For the 1d Ising model RW and microcanonical expectation
values for N i(E) may agree due to the trivial character of
the model: It has only one FG for i ≥ 1 and one FG for
i ≤ −1.


